Two tuning forks having frequency $256\, Hz \,(A)$ and $262\, Hz \,(B)$ tuning fork. $A$ produces some beats per second with unknown tuning fork, same unknown tuning fork  produce double beats per second from $B$ tuning fork then the frequency of unknown tuning fork is :- ............ $\mathrm{Hz}$

  • A

    $262$

  • B

    $260$

  • C

    $250$

  • D

    $300$

Similar Questions

A wave travelling along the $x- $ axis is described by the equation $y(x, t) = 0.005\,\,cos(\alpha x\,-\,\beta t).$  If the wavelength and the time period of the wave are $0.08 \,\,m$ and $2.0\,\,s,$  respectively, then $\alpha $ and $\beta $ in appropriate units are

A train whistling at constant frequency is moving towards a station at a constant speed $V$. The train goes past a stationary observer on the station. The frequency $n'$ of the sound as heard by the observer is plotted as a function of time $t (Fig.)$ . Identify the expected curve

Calculate the temperature at which the speed of sound will be two times its   ..... $K$ value at $0\,^oC$

When a tuning fork is vibrating, the vibrations of the two prongs

The wave described by $y = 0.25\,\sin \,\left( {10\pi x - 2\pi t} \right)$ , where $x$ and $y$ are in $meters$ and $t$ in $seconds$ , is a wave travelling along is