- Home
- Standard 11
- Physics
A racing car moving towards a cliff sounds its horn. The driver observes that the sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If $v$ is the velocity of sound, the velocity of the car will be
$\frac{v}{{\sqrt 2 }}$
$\frac{v}{2}$
$\frac{v}{3}$
$\frac{v}{4}$
Solution
Octave = twice
$2 \mathrm{f}=\mathrm{f}_{0}\left(\frac{\mathrm{v}}{\mathrm{v}-\mathrm{v}_{\mathrm{s}}}\right) \cdot\left(\frac{\mathrm{v}+\mathrm{v}_{0}}{\mathrm{v}}\right)$
$2 \mathrm{f}=\mathrm{f}\left(\frac{\mathrm{v}+\mathrm{v}_{0}}{\mathrm{v}-\mathrm{v}_{\mathrm{s}}}\right) \quad\left(\mathrm{v}_{\mathrm{s}}=\mathrm{v}_{0}\right)$
$2\left(\mathrm{v}-\mathrm{v}_{\mathrm{c}}\right)=\mathrm{v}+\mathrm{v}_{\mathrm{c}}$
$3 \mathrm{v}_{\mathrm{c}}=\mathrm{v}$
$v_{c}=\frac{v}{3}$