Two unlike charges of magnitude $q$ are separated by a distance $2d$. The potential at a point midway between them is

  • A

    Zero

  • B

    $\frac{1}{{4\pi {\varepsilon _0}}}$

  • C

    $\frac{1}{{4\pi {\varepsilon _0}}}.\frac{q}{d}$

  • D

    $\frac{1}{{4\pi {\varepsilon _0}}}.\frac{{2q}}{{{d^2}}}$

Similar Questions

A solid sphere of radius $R$ is charged uniformly. At what distance from its surface is the electrostatic potential half of the potential at the centre?

The electric potential $V(x, y, z)$ for a planar charge distribution is given by: 

$V\left( {x,y,z} \right) = \left\{ {\begin{array}{*{20}{c}}
{0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x\, < \, - d}\\
{ - {V_0}{{\left( {1 + \frac{x}{d}} \right)}^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\, - \,d\, \le x < 0}\\
{ - {V_0}\left( {1 + 2\frac{x}{d}} \right)\,\,\,\,\,\,\,\,\,\,\,for\,0\, \le x < d}\\
{ - 3{V_0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x\, > \,d}
\end{array}} \right.$

where $-V_0$ is the potential at the origin and $d$ is a distance. Graph of electric field as a function of position is given as

Draw a graph of $V \to r$ for spherical shell.

A charge of total amount $Q$ is distributed over two concentric hollow spheres of radii $r$ and $R ( R > r)$ such that the surface charge densities on the two spheres are equal. The electric potential at the common centre is

  • [AIEEE 2012]

An infinitely long thin wire, having a uniform charge density per unit length of $5 nC / m$, is passing through a spherical shell of radius $1 m$, as shown in the figure. A $10 nC$ charge is distributed uniformly over the spherical shell. If the configuration of the charges remains static, the magnitude of the potential difference between points $P$ and $R$, in Volt, is. . . .

[Given: In SI units $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9, \ln 2=0.7$. Ignore the area pierced by the wire.]

  • [IIT 2024]