$q$ परिमाण के दो विपरीत आवेश एक दूसरे से $2d$ दूरी पर रखे हैं। उनके बीच मध्य बिन्दु पर विभव होगा
शून्य
$\frac{1}{{4\pi {\varepsilon _0}}}$
$\frac{1}{{4\pi {\varepsilon _0}}}.\frac{q}{d}$
$\frac{1}{{4\pi {\varepsilon _0}}}.\frac{{2q}}{{{d^2}}}$
किसी स्थान पर एक विद्युत क्षेत्र, $\overrightarrow{ E }=(25 \hat{ i }+30 \hat{ j }) NC ^{-1}$, विद्यमान है। यदि मूलबिन्दु पर विभव का मान शून्य माना जाय तो, $x=2\; m , y=2\; m$ पर विभव होगा :
$N$ एकसमान गोलीय बूँदें जो समान विभव $V$ तक आवेशित है, मिलकर एक बड़ी बूँद बनाती है। नई बूँद का विभव होगा
किसी खोखले गोले में विभव $(V)$ केन्द्र से दूरी $(s)$ के सापेक्ष निम्न ग्राफ के अनुसार परिवर्तित होगा
त्रिज्या $R$ आवेशित धात्विक पतले खोल के केन्द्र से त्रिज्या दूरी $r$ के साथ स्थिर विधुत विभव के विचरण को दर्शाने वाला ग्राफ है
एक समद्विबाहु त्रिभुज के $B$ व $C$ शीर्षों पर $ + \,q$ तथा $ - \,q$ आवेश रखे गये हैं शीर्ष $A$ पर विभव होगा