Two vector $A$ and $B$ have equal magnitudes. Then the vector $\mathop A\limits^ \to + \mathop B\limits^ \to $ is perpendicular to

  • A

    $\mathop A\limits^ \to \times \mathop B\limits^ \to $

  • B

    $\mathop A\limits^ \to - \mathop B\limits^ \to $

  • C

    $3\mathop A\limits^ \to \times 3\mathop B\limits^ \to $

  • D

    All of these

Similar Questions

Show that the scalar product of two vectors obeys the law of commutative.

What will be the projection of vector $A=\hat{i}+\hat{j}+\hat{k}$ on vector $\vec{B}=\hat{i}+\hat{j}$.

  • [JEE MAIN 2021]

The vector sum of two forces is perpendicular to their vector differences. In that case, the forces

  • [AIPMT 2003]

The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$

  • [NEET 2017]

A vector $\overrightarrow{ A }$ points vertically upward and $\overrightarrow{ B }$ points towards north. The vector product $\overrightarrow{ A } \times \overrightarrow{ B }$ is