Two vector $A$ and $B$ have equal magnitudes. Then the vector $\mathop A\limits^ \to + \mathop B\limits^ \to $ is perpendicular to
$\mathop A\limits^ \to \times \mathop B\limits^ \to $
$\mathop A\limits^ \to - \mathop B\limits^ \to $
$3\mathop A\limits^ \to \times 3\mathop B\limits^ \to $
All of these
Show that the scalar product of two vectors obeys the law of commutative.
What will be the projection of vector $A=\hat{i}+\hat{j}+\hat{k}$ on vector $\vec{B}=\hat{i}+\hat{j}$.
The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$