The angle between vectors $(\overrightarrow {\rm{A}} \times \overrightarrow {\rm{B}} )$ and $(\overrightarrow {\rm{B}} \times \overrightarrow {\rm{A}} )$ is

  • A

    Zero

  • B

    $\pi$

  • C

    $\pi /4$

  • D

    $\pi /2$

Similar Questions

If $\overrightarrow A  \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-

Show that the scalar product of two vectors obeys the law of commutative.

Define the vector product of two vectors.

Given : $\vec A\, = \,2\hat i\, + \,p\hat j\, + q\hat k$ and $\vec B\, = \,5\hat i\, + \,7\hat j\, + 3\hat k,$ if $\vec A\,||\,\vec B,$ then the values of $p$ and $q$ are, respectively

$\vec A$ and $\vec B$ are two vectors and $\theta$ is the angle between them, if $|\vec A \times \vec B|=\sqrt 3(\vec A \cdot \vec B) $ the value of $\theta$ is ......... $^o$

  • [AIPMT 2007]