Given below in Column $-I$ are the relations between vectors $\vec a \,$ $\vec b \,$ and $\vec c \,$ and in Column $-II$ are the orientations of $\vec a$, $\vec b$ and $\vec c$ in the $XY-$ plane. Match the relation in Column $-I$ to correct orientations in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ | $(i)$ Image |
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ | $(ii)$ Image |
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ | $(iii)$ Image |
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ | $(iv)$ Image |
Consider the below given diagram in which vectors $A$ and $B$ are connected by head and tail.
Resultant vector $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$
$(a)$ from $(iv)$ it is clear that $\mathrm{c}=\mathrm{a}+\mathrm{b}$
$(iv)$ matches with $(a)$
$(b)$ from (iii) $\mathrm{c}+\mathrm{b}=\mathrm{a}$
$ \Rightarrow \mathrm{a}-\mathrm{c}=\mathrm{b}$
$(iii)$ matches with $(b)$
$(c)$ from $(i)$ $\mathrm{b}=\mathrm{a}+\mathrm{c} \Rightarrow \mathrm{b}-\mathrm{a}=\mathrm{c}$
$(ii)$ matches with $(d)$
$(d)$ from (ii) $-\mathrm{c}=\mathrm{a}+\mathrm{b} \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=0$
$(i)$ matches with $(c)$
Two vectors $\overrightarrow{{X}}$ and $\overrightarrow{{Y}}$ have equal magnitude. The magnitude of $(\overrightarrow{{X}}-\overrightarrow{{Y}})$ is ${n}$ times the magnitude of $(\overrightarrow{{X}}+\overrightarrow{{Y}})$. The angle between $\overrightarrow{{X}}$ and $\overrightarrow{{Y}}$ is -
If a particle moves from point $P (2,3,5)$ to point $Q (3,4,5)$. Its displacement vector be
A car moves towards north at a speed of $54 \,km / h$ for $1 \,h$. Then it moves eastward with same speed for same duration. The average speed and velocity of car for complete journey is ..........
Two forces ${F_1} = 1\,N$ and ${F_2} = 2\,N$ act along the lines $x = 0$ and $y = 0$ respectively. Then the resultant of forces would be
The angle between vector $(\overrightarrow{{A}})$ and $(\overrightarrow{{A}}-\overrightarrow{{B}})$ is :