Given below in Column $-I$ are the relations between vectors $\vec a \,$ $\vec b \,$ and $\vec c \,$ and in Column $-II$ are the orientations of $\vec a$, $\vec b$ and $\vec c$ in the $XY-$ plane. Match the relation in Column $-I$ to correct orientations in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ | $(i)$ Image |
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ | $(ii)$ Image |
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ | $(iii)$ Image |
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ | $(iv)$ Image |
Consider the below given diagram in which vectors $A$ and $B$ are connected by head and tail.
Resultant vector $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$
$(a)$ from $(iv)$ it is clear that $\mathrm{c}=\mathrm{a}+\mathrm{b}$
$(iv)$ matches with $(a)$
$(b)$ from (iii) $\mathrm{c}+\mathrm{b}=\mathrm{a}$
$ \Rightarrow \mathrm{a}-\mathrm{c}=\mathrm{b}$
$(iii)$ matches with $(b)$
$(c)$ from $(i)$ $\mathrm{b}=\mathrm{a}+\mathrm{c} \Rightarrow \mathrm{b}-\mathrm{a}=\mathrm{c}$
$(ii)$ matches with $(d)$
$(d)$ from (ii) $-\mathrm{c}=\mathrm{a}+\mathrm{b} \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=0$
$(i)$ matches with $(c)$
A person moved from $A$ to $B$ on a circular path as shown in figure. If the distance travelled by him is $60 \,m$, then the magnitude of displacement would be$.....\,m$ (Given $\left.\cos 135^{\circ}=-0.7\right)$
The angle between vector $(\overrightarrow{{A}})$ and $(\overrightarrow{{A}}-\overrightarrow{{B}})$ is :
Explain subtraction of vectors.
Two equal forces ($P$ each) act at a point inclined to each other at an angle of $120^°$. The magnitude of their resultant is
A body is at rest under the action of three forces, two of which are ${\vec F_1} = 4\hat i,\,{\vec F_2} = 6\hat j,$ the third force is