Given below in Column $-I$ are the relations between vectors $\vec a \,$ $\vec b \,$ and $\vec c \,$ and in Column $-II$ are the orientations of $\vec a$, $\vec b$ and $\vec c$ in the $XY-$ plane. Match the relation in Column $-I$ to correct orientations in Column $-II$.

  Column $-I$   Column $-II$
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ $(i)$ Image
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ $(ii)$ Image
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ $(iii)$ Image
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ $(iv)$ Image
885-153

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider the below given diagram in which vectors $A$ and $B$ are connected by head and tail.

Resultant vector $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$

$(a)$ from $(iv)$ it is clear that $\mathrm{c}=\mathrm{a}+\mathrm{b}$

$(iv)$ matches with $(a)$

$(b)$ from (iii) $\mathrm{c}+\mathrm{b}=\mathrm{a}$

$ \Rightarrow \mathrm{a}-\mathrm{c}=\mathrm{b}$

$(iii)$ matches with $(b)$

$(c)$ from $(i)$ $\mathrm{b}=\mathrm{a}+\mathrm{c} \Rightarrow \mathrm{b}-\mathrm{a}=\mathrm{c}$

$(ii)$ matches with $(d)$

$(d)$ from (ii) $-\mathrm{c}=\mathrm{a}+\mathrm{b} \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}=0$

$(i)$ matches with $(c)$

885-s153

Similar Questions

If the resultant of $n$ forces of different magnitudes acting at a point is zero, then the minimum value of $n$ is

The position vectors of points $A, B, C$ and $D$ are $\vec A = 3\hat i + 4\hat j + 5\hat k,\,\vec B = 4\hat i + 5\hat j + 6\hat k,\,\vec C = 7\hat i + 9\hat j + 3\hat k$ and $\vec D = 4\hat i + 6\hat j$ then the displacement vectors $\overrightarrow {AB} $ and $\overrightarrow {CD} $ are

A hall has the dimensions $10\,m \times 12\,m \times 14\,m.$A fly starting at one corner ends up at a diametrically opposite corner. What is the magnitude of its displacement...........$m$

$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=.......$

If the sum of two unit vectors is a unit vector, then magnitude of difference is