Two vectors of magnitude $3$ & $4$ have resultant which make angle $\alpha$ & $\beta$ respectively with them $\{given\, \alpha + \beta \neq 90^o\}$

  • A

    $\frac{\sin \alpha}{\sin \beta} = \frac{3}{4}$

  • B

    $\frac{\sin \alpha}{\cos \beta} = \frac{3}{4}$

  • C

    $\frac{\sin \alpha}{\sin \beta} = \frac{4}{3}$

  • D

    None of above

Similar Questions

Three forces acting on a body are shown in the figure. To have the resultant force only along the $y-$ direction, the magnitude of the minimum additional force needed is.........$N$ 

$Y $ component of velocity is $20$ and $X$ component of velocity is $10$. The direction of motion of the body with the horizontal at this instant is

Find the magnitude of the unknown forces $X$ and $Y$ if sum of all forces is zero

The resultant of two vectors $\vec{A}$ and $\vec{B}$ is perpendicular to $\overrightarrow{\mathrm{A}}$ and its magnitude is half that of $\vec{B}$. The angle between vectors $\vec{A}$ and $\vec{B}$ is . . . . . . 

  • [JEE MAIN 2024]

For component of a vector $A =(3 \hat{ i }+4 \hat{ j }-5 \hat{ k })$, match the following colum.
Colum $I$ Colum $II$
$(A)$ $x-$axis $(p)$ $5\,unit$
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ $(q)$ $4\,unit$
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ $(r)$ $0$
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ $(s)$ None