Uniform electric field of magnitude $100$ $V/m$ in space is directed along the line $y = 3 + x$. Find the potential difference between point $A$ $ (3, 1)$ $\&$ $B$ $(1, 3)$.......$V$
$100$
$200$
$300 $
$0$
Variation in electric potential is maximum if one goes
Uniform electric field of magnitude $ 100$ $V/m$ in space is directed along the line $y$ $=$ $3$ $+$ $x$. Find .........$V$ the potential difference between point $A (3, 1)$ $ \&$ $ B$ $ (1, 3)$
The electric field in a region surrounding the origin is uniform and along the $x$ - axis. A small circle is drawn with the centre at the origin cutting the axes at points $A, B, C, D$ having co-ordinates $(a, 0), (0, a), (-a, 0), (0, -a)$; respectively as shown in figure then potential in minimum at the point
Consider a finite insulated, uncharged conductor placed near a finite positively charged conductor. The uncharged body must have a potential
The give graph shown variation (with distance $r$ from centre) of