Uniform electric field of magnitude $ 100$ $V/m$ in space is directed along the line $y$ $=$ $3$ $+$ $x$. Find .........$V$ the potential difference between point $A (3, 1)$ $ \&$ $ B$ $ (1, 3)$

  • A

    $100$ 

  • B

    $200$ $  \sqrt 2$ 

  • C

    $200$ 

  • D

    $0$

Similar Questions

A spherical conductor of radius $2m$ is charged to a potential of $120\, V$. It is now placed inside another hollow spherical conductor of radius $6m$. Calculate the potential to which the bigger sphere would be raised......$V$

There is a uniform electrostatic field in a region. The potential at various points on a small sphere centred at $P$, in the region, is found to vary between in the limits $589.0\,V$ to $589.8\, V$. What is the potential at a point on the sphere whose radius vector makes an angle of $60^o$ with the direction of the field ?........$V$

  • [JEE MAIN 2017]

Two charged conducting spheres of radii $a$ and $b$ are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:

  • [JEE MAIN 2024]

Three concentric spherical shells have radii $a, b$ and $c (a < b < c)$ and have surface charge densities $\sigma ,-\;\sigma $ and $\;\sigma \;$ respectively. If  $V_A,V_B$ and $V_C$  denote the potentials of the three shells, then, for $c = a +b,$ we have

  • [AIPMT 2009]

Two conducting spheres of radii $R_1$ and $R_2$ are charged with charges $Q_1$ and $Q_2$ respectively. On bringing them in contact there is