2. Electric Potential and Capacitance
hard

A charge $Q$ is distributed over three concentric spherical shell of radii $a, b, c (a < b < c)$ such that their surface charge densities are equal to one another. The total potential at a point at distance $r$ from their common centre, where $r < a$, would be

A

$\frac{Q}{{12\pi \,{ \in _0}}}\frac{{ab + bc + ca}}{{abc}}$

B

$\frac{{Q\,\left( {{a^2} + {b^2} + {c^2}} \right)}}{{4\pi \,{ \in _0}\,\left( {{a^3} + {b^3} + {c^3}} \right)\,}}$

C

$\frac{Q}{{4\pi \,{ \in _0}\,\left( {a + b + c} \right)\,}}$

D

$\frac{{Q\,\left( {a + b + c} \right)}}{{4\pi \,{ \in _0}\,\left( {{a^2} + {b^2} + {c^2}} \right)\,\,}}$

(JEE MAIN-2019)

Solution

$\mathrm{Q}_{1}+\mathrm{q}_{2}+\mathrm{Q}_{3}=\mathrm{Q}………(1)$

$\frac{\mathrm{Q}_{1}}{4 \pi \mathrm{a}^{2}}=\frac{\mathrm{Q}_{2}}{4 \pi \mathrm{b}^{2}}=\frac{\mathrm{Q}_{3}}{4 \pi \mathrm{c}^{2}}=\mathrm{k}………(2)$

Subs. $Q_{1}, Q_{2}, Q_{3}$ in $( 1)$

$k=\frac{Q}{4 \pi\left(a^{2}+b^{2}+c^{2}\right)}$

$v=\frac{k Q_{1}}{a}+\frac{k Q_{2}}{b}+\frac{k Q_{3}}{c}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.