2. Polynomials
easy

Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases : $p(x)=x^{3}-4 x^{2}+x+6$, $g(x)=x-3$.

Option A
Option B
Option C
Option D

Solution

We have $p ( x )= x ^{3}-4 x ^{2}+ x +6$ and $g ( x )= x -3$

$ \therefore  p (3) =(3)^{3}-4(3)^{2}+(3)+6=27-4(9)+3+6$

               $=27-36+3+6=0 $

since         $g(x)=0$

$\therefore g ( x )$ is a factor of $p ( x )$.

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.