Using properties of determinants, prove that:
$\left|\begin{array}{ccc}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta\end{array}\right|=(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha+\beta+\gamma)$
$\Delta=\left|\begin{array}{ccc}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta\end{array}\right|$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1},$ we have:
$\Delta=\left|\begin{array}{ccc}\alpha & \alpha^{2} & \beta+\gamma \\ \beta-\alpha & \beta^{2}-\alpha^{2} & \alpha-\beta \\ \gamma-\alpha & \gamma^{2}-\alpha^{2} & \alpha-\gamma\end{array}\right|$
$=(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{ccc}\alpha & \alpha^{2} & \beta+\gamma \\ 1 & \beta+\alpha & -1 \\ 1 & \gamma+\alpha & -1\end{array}\right|$
Applying $R_{3} \rightarrow R_{3}-R_{2},$ we have:
$\Delta=(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{ccc}\alpha & \alpha^{2} & \beta+\gamma \\ 1 & \beta+\alpha & -1 \\ 0 & \gamma-\beta & 0\end{array}\right|$
Expanding along $R_{3},$ we have:
$\Delta=(\beta-\alpha)(\gamma-\alpha)[-(\gamma-\beta)(-\alpha-\beta-\gamma)]$
$=(\beta-\alpha)(\gamma-\alpha)(\gamma-\beta)(\alpha+\beta+\gamma)$
$=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)$
Hence, the given result is proved.
The value of $\left| {\,\begin{array}{*{20}{c}}{441}&{442}&{443}\\{445}&{446}&{447}\\{449}&{450}&{451}\end{array}\,} \right|$ is
If $A$ and $B$ are $3 × 3$ matrices and $| A | \ne 0$, then which of the following are true?
If $\mathrm{a, b, c},$ are in $\mathrm{A.P}$, then the determinant
$\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$ is
Which of the following values of $\alpha$ satisfy the equation
$\left|\begin{array}{lll}(1+\alpha)^2 & (1+2 \alpha)^2 & (1+3 \alpha)^2 \\ (2+\alpha)^2 & (2+2 \alpha)^2 & (2+3 \alpha)^2 \\ (3+\alpha)^2 & (3+2 \alpha)^2 & (3+3 \alpha)^2\end{array}\right|=-648 \alpha$ ?
$(A)$ $-4$ $(B)$ $9$ $(C)$ $-9$ $(D)$ $4$
If $ab + bc + ca = 0$ and $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$, then one of the value of $x$ is