If $A, B, C$ are the angles of a triangle and $\left| {\begin{array}{*{20}{c}}1&1&1\\{1 + \sin A}&{1 + \sin B}&{1 + \sin C}\\{\sin A + {{\sin }^2}A}&{\sin B + {{\sin }^2}B}&{\sin C + {{\sin }^2}C} \end{array}} \right|$ $= 0$, then the triangle is

  • A

    a equilateral

  • B

    an isosceles

  • C

    a right angled triangle

  • D

    any triangle

Similar Questions

The total number of distinct $x \in \mathbb{R}$ for which $\left|\begin{array}{ccc}x & x^2 & 1+x^3 \\ 2 x & 4 x^2 & 1+8 x^3 \\ 3 x & 9 x^2 & 1+27 x^3\end{array}\right|=10$ is

  • [IIT 2016]

$\left| {\,\begin{array}{*{20}{c}}{{b^2} + {c^2}}&{{a^2}}&{{a^2}}\\{{b^2}}&{{c^2} + {a^2}}&{{b^2}}\\{{c^2}}&{{c^2}}&{{a^2} + {b^2}}\end{array}\,} \right| = $

  • [IIT 1980]

Prove that $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$

$2\,\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2} - bc}&{{b^2} - ac}&{{c^2} - ab}\end{array}\,} \right| = $

Which of the following matrices can $NOT$ be obtained from the matrix $\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$ by a single elementary row operation?

  • [JEE MAIN 2022]