Using properties of determinants, prove this:

$\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\Delta=\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|$

Applying $R_{2} \rightarrow R_{2}-2 R_{1}$ and $R_{3} \rightarrow R_{3}-3 R_{1},$ we have:

$\Delta=\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 3 & 7+3 p\end{array}\right|$

Applying $R_{3} \rightarrow R_{3}-3 R_{2},$ we have:

$\Delta=\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 0 & 1\end{array}\right|$

Expanding along $C_{1},$ we have:

$\Delta=1\left|\begin{array}{cc}1 & 2+p \\ 0 & 1\end{array}\right|=1(1-0)=1$

Similar Questions

The number of real values of $x$ satisfying $\left| {\,\begin{array}{*{20}{c}} x&{3x + 2}&{2x - 1}\\{2x - 1}&{4x}&{3x + 1}\\{7x - 2}&{17x + 6}&{12x - 1}\end{array}\,} \right|$ $= 0$ is

If $a, b, c$ are all different and $\left| {\begin{array}{*{20}{c}}a&{{a^3}}&{{a^4}\, - \,1}\\b&{{b^3}}&{{b^4}\, - \,1}\\c&{{c^3}}&{{c^4}\, - \,1}\end{array}} \right|$ $= 0$ , then :

For a non - zero, real $a, b$ and $c$ $\left| {\begin{array}{*{20}{c}}{\frac{{{a^2} + {b^2}}}{c}}&c&c\\a&{\frac{{{b^2} + {c^2}}}{a}}&a\\b&b&{\frac{{{c^2} + {a^2}}}{b}} \end{array}} \right|$ $= \alpha \, abc$, then the values of $\alpha$ is

Let the numbers $2, b, c$ be in an $A.P$ and $A = \left[ {\begin{array}{*{20}{c}}
  1&1&1 \\ 
  2&b&c \\ 
  4&{{b^2}}&{{c^2}} 
\end{array}} \right]$. If $det(A) \in [2,16]$ then $c$ lies in the interval

  • [JEE MAIN 2019]

Let $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and $I$ be the identity matrix of order $3$ . If $\left.Q=q_{i j}\right]$ is a matrix such that $P^{50}-Q=I$, then $\frac{q_{31}+q_{32}}{q_{21}}$ equals

  • [IIT 2016]