Which of the following values of $\alpha$ satisfy the equation

$\left|\begin{array}{lll}(1+\alpha)^2 & (1+2 \alpha)^2 & (1+3 \alpha)^2 \\ (2+\alpha)^2 & (2+2 \alpha)^2 & (2+3 \alpha)^2 \\ (3+\alpha)^2 & (3+2 \alpha)^2 & (3+3 \alpha)^2\end{array}\right|=-648 \alpha$ ?

$(A)$ $-4$ $(B)$ $9$ $(C)$ $-9$ $(D)$ $4$

  • [IIT 2015]
  • A

    $(B,D)$

  • B

    $(B,C)$

  • C

    $(A,C)$

  • D

    $(A,D)$

Similar Questions

Using properties of determinants, prove that:

$\left|\begin{array}{ccc}3 a & -a+b & -a+c \\ -b+a & 3 b & -b+c \\ -c+a & -c+b & 3 c\end{array}\right|=3(a+b+c)(a b+b c+c a)$

If $A$, $B$ and $C$ are the angles of a triangle then the value of the determinant

$\left| {\begin{array}{*{20}{c}}
  { - 1 + \cos B}&{\cos C + \cos B}&{\cos B} \\ 
  {\cos C + \cos A}&{ - 1 + \cos A}&{\cos A} \\ 
  { - 1 + \cos B}&{ - 1 + \cos A}&{ - 1} 
\end{array}} \right|$

$\left| {\,\begin{array}{*{20}{c}}{{a^2} + {x^2}}&{ab}&{ca}\\{ab}&{{b^2} + {x^2}}&{bc}\\{ca}&{bc}&{{c^2} + {x^2}}\end{array}\,} \right|$ is divisor of

Using the property of determinants and without expanding, prove that:

$\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|=0$

If $a, b, c$ are all different from zero and $\left| {\begin{array}{*{20}{c}} {1  + a}&1&1\\ 1&{1  +  b}&1\\ 1&1&{1  +  c} \end{array}} \right| = 0$ , then the value of $a^{-1} + b^{-1} + c^{-1}$ is