3 and 4 .Determinants and Matrices
easy

Using the property of determinants and without expanding, prove that:

$\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$

Option A
Option B
Option C
Option D

Solution

$\Delta=\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|$

Applying $R_{1} \rightarrow R_{1}+R_{2},$ we have:

$\Delta=\left|\begin{array}{ccc}a-c & b-a & c-b \\ b-c & c-a & a-b \\ -(a-c) & -(b-a) & -(c-b)\end{array}\right|$

$=-\left|\begin{array}{ccc}a-c & b-a & c-b \\ b-c & c-a & a-b \\ a-c & b-a & c-b\end{array}\right|$

Here, the two rows $R_{1}$ and $R_{3}$ are identical.

$\therefore \Delta=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.