નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી અને વિસ્તરણ કર્યા સિવાય સાબિત કરો : $\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$
$\Delta=\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|$
By applying $C_{3} \rightarrow C_{3}+C_{2} .$ We have:
$\Delta=\left|\begin{array}{lll}1 & b c & a b+b c+c a \\ 1 & c a & a b+b c+c a \\ 1 & a b & a b+b c+c a\end{array}\right|$
Here. Two columns $C_{1}$ and $C_{3}$ are proportional.
$\therefore \Delta=0$
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી સાબિત કરો કે, $\left|\begin{array}{lll}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x),$ $p$ અચળ છે.
$f(x)=\left| {\begin{array}{*{20}{c}} {{{\sin }^2}x}&{ - 2 + {{\cos }^2}x}&{\cos 2x} \\ {2 + {{\sin }^2}x}&{{{\cos }^2}x}&{\cos 2x} \\ {{{\sin }^2}x}&{{{\cos }^2}x}&{1 + \cos 2x} \end{array}} \right| ,x \in[0, \pi]$
તો $f(x)$ ની મહતમ કિમંત મેળવો.
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{bc}&{ca}&{ab}\\{b + c}&{c + a}&{a + b}\end{array}\,} \right|$ =
$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $
જો ${a_1},{a_2},{a_3},........,{a_n},......$ એ સમગુણોતર શ્રેણીમાં હોય અને દરેક $i$ માટે ${a_i} > 0$ તો $\Delta = \left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 2}}}&{\log {a_{n + 4}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 8}}}&{\log {a_{n + 10}}}\\{\log {a_{n + 12}}}&{\log {a_{n + 14}}}&{\log {a_{n + 16}}}\end{array}} \right|= . . . $