જો $\left| {\,\begin{array}{*{20}{c}}{x + \alpha }&\beta &\gamma \\\gamma &{x + \beta }&\alpha \\\alpha &\beta &{x + \gamma }\end{array}\,} \right| = 0$ તો $x$ મેળવો.
$0$ અને $ - (\alpha + \beta + \gamma )$
$0 $ અને $(\alpha + \beta + \gamma )$
$1 $ અને $(\alpha - \beta - \gamma )$
$0 $ અને $({\alpha ^2} + {\beta ^2} + {\gamma ^2})$
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી સાબિત કરો કે, $\left| {\begin{array}{*{20}{l}}
{\sin \alpha }&{\cos \alpha }&{\cos (\alpha + \delta )} \\
{\sin \beta }&{\cos \beta }&{\cos (\beta + \delta )} \\
{\sin \gamma }&{\cos \gamma }&{\cos (\gamma + \delta )}
\end{array}} \right| = 0$
$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\{\cos (p - d)x}&{\cos px}&{\cos (p + d)x}\\{\sin (p - d)x}&{\sin px}&{\sin (p + d)x}\end{array}\,} \right|$ ની કિમંત . . . પર આધારિત નથી.
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$
$\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$ નું મૂલ્ય શોધો.
જો $\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 3}\\{x + 2}&{x + 3}&{x + 4}\\{x + a}&{x + b}&{x + c}\end{array}\,} \right| = 0$, તો $a,b,c$ એ . . . શ્રેણીમાં છે.