Velocity constant $K$ of a reaction is affected by
Change in the concentration of the reactant
Change of temperature
Change in the concentration of the product
None of the above
Which of the following rate laws has an overall order of $0.5$ for reaction involving substances $x$, $y$ and $z$
Consider the reaction :
$Cl_2(aq) + H_2S(aq) \to S(s) + 2H^+(aq) + 2Cl^-(aq)$
The rate equation for this reaction is rate $= k[Cl_2][H_2S]$ Which of these mechanisms is/are consistent with this rate equation ?
$A.\,C{l_2} + {H_2}S \to {H^ + } + C{l^ - } + C{l^ + } + H{S^- }$ (slow)
$C{l^ + } + H{S^ - } \to {H^ + } + C{l^ - } + {S}$ (fast)
$B.\, H_2S \Leftrightarrow H^+ + HS^-$ (fast equilibrium)
$Cl_2 + HS^-\to 2Cl^-+ H^+ + S$ (slow)
The concentration of $R$ in the reaction $R \rightarrow P$ was measured as a function of time and the following data is obtained:
$[R]$ (molar) | $1.0$ | $0.75$ | $0.40$ | $0.10$ |
$\mathrm{t}$ (min.) | $0.0$ | $0.05$ | $0.12$ | $0.18$ |
The order of the reaction is
For a reaction scheme. $A\xrightarrow{{{k_1}}}B\xrightarrow{{{k_2}}}C$ if the rate of formation of $B$ is set to be zero then the concentration of $B$ is given by
For a certain reaction, the rate $=k[A]^2[B]$, when the initial concentration of $A$ is tripled keeping concentration of $B$ constant, the initial rate would