Consider the reaction :

$Cl_2(aq) + H_2S(aq) \to  S(s) + 2H^+(aq) + 2Cl^-(aq)$

The rate equation for this reaction is rate $= k[Cl_2][H_2S]$ Which of these mechanisms is/are consistent with this rate equation ?

$A.\,C{l_2} + {H_2}S \to {H^ + } + C{l^ - } + C{l^ + } + H{S^- }$  (slow)

$C{l^ + } + H{S^ - } \to {H^ + } + C{l^ - } + {S}$   (fast)

$B.\, H_2S  \Leftrightarrow  H^+ + HS^-$   (fast equilibrium)

$Cl_2 + HS^-\to  2Cl^-+ H^+ + S$ (slow)

  • A

    $A$ only

  • B

    $B$ only

  • C

    Both $A$ and $B$

  • D

    Neither $A$ nor $B$

Similar Questions

The reaction $2{H_2}{O_2} \to 2{H_2}O + {O_2}$ is a

In a reaction $A_2B_3(g) \to A_2(g) + \frac{3}{2}B_2(g)$, the pressure increases from $60$ torr to $75$  torr in $2.5\, minutes$. The rate of disappearance of $A_2B_3$ is ........ $torr\, min^{-1}$

By “the overall order of a reaction”, we mean

The rate of dissappearance of $MnO_4^-$ in the following reaction is $4.56 \times 10^{-3}\, M/s$

$2MnO_4^-+ 10I^-+ 16H^+ \to 2Mn^{2+} + 5I_2 + 8 H_2O$

The rate of apperance of $I_2$ is

The rate constant for a second order reaction is $8 \times {10^{ - 5}}\,{M^{ - 1}}\,mi{n^{ - 1}}$. How long will it take a $ 1\,M $ solution to be reduced to $0.5\, M$