We would like to make a vessel whose volume does not change with temperature (take a hint from the problem above). We can use brass and iron $\left( {{\beta _{{\text{v brass }}}} = 6 \times {{10}^{ - 5}}/K} \right.$ and $\left. {{\beta _{{\text{viron }}}} = 3.55 \times {{10}^{ - 5}}/K} \right)$ to create a volume of $100\,cc$ . How do you think you can achieve this.
Let, $\mathrm{V}_{i o}$ and $\mathrm{V}_{b o}$ are volume of iron and brass at $0^{\circ} \mathrm{C}$ respectively.
$\mathrm{V}_{i}, \mathrm{~V}_{b}$ are volume of iron and brass respectively of $\Delta \mathrm{T}^{\circ} \mathrm{C} . \gamma_{i}$ and $\gamma_{b}$ are coefficient of volume expansion of them respectively.
According to question,
$\mathrm{V}_{i o}-\mathrm{V}_{b o}=\mathrm{V}_{i}-\mathrm{V}_{b}=100 \mathrm{cc}$
$\therefore \mathrm{V}_{i}=\mathrm{V}_{i o}\left(1+\gamma_{i} \Delta \mathrm{T}\right)$ and $\mathrm{V}_{b}=\mathrm{V}_{b o}\left(1+\gamma_{b} \Delta \mathrm{T}\right)$
$\therefore \quad$ From equation $(1)$,
$\mathrm{V}_{i}-\mathrm{V}_{b}=\mathrm{V}_{i \mathrm{o}}\left(1+\gamma_{i} \Delta \mathrm{T}\right)-\mathrm{V}_{i b}\left(1+\gamma_{b} \Delta \mathrm{T}\right)$
$\mathrm{V}_{i}-\mathrm{V}_{b}=\mathrm{V}_{i \mathrm{o}}-\mathrm{V}_{i b}+\mathrm{V}_{i \mathrm{o}} \gamma_{i} \Delta \mathrm{T}-\mathrm{V}_{i b} \gamma_{b} \Delta \mathrm{T}$
But $\mathrm{V}_{i}-\mathrm{V}_{b}=\mathrm{V}_{i \mathrm{o}}-\mathrm{V}_{i b}$
$\therefore \mathrm{V}_{i \mathrm{o}} \gamma_{i} \Delta \mathrm{T}=\mathrm{V}_{i b} \gamma_{b} \Delta \mathrm{T}$ $\therefore \frac{\mathrm{V}_{i o}}{\mathrm{~V}_{b o}}=\frac{\gamma_{b}}{\gamma_{i}}$ for midpoint $=\frac{6 \times 10^{-5}}{3.55 \times 10^{-5}}=\frac{6}{3.55}$ $\therefore \mathrm{V}_{i 0}=\frac{6}{3.55} \mathrm{~V}_{b 0}$ $\therefore$ From equation $\mathrm{V}_{i \mathrm{o}}-\mathrm{V}_{i b}=100$, $\frac{6}{3.55} \mathrm{~V}_{b o}-\mathrm{V}_{b o}=100$
We are able to squeeze snow and make balls out of it because of
Surface of the lake is at $2°C$. Find the temperature of the bottom of the lake........ $^oC$
A pendulum clock keeps correct time at $0°C$. Its mean coefficient of linear expansions is $\alpha /^\circ C$, then the loss in seconds per day by the clock if the temperature rises by $t°C$ is
Coefficient of linear expansion of a vessel completely filled with $Hg$ is $1 \times 10^{-5} /{ }^{\circ} C$. If there is no overflow of $Hg$ on heating the vessel, then coefficient of cubical expansion of $Hg$ is ......
A cuboid $ABCDEFGH$ is anisotropic with $\alpha_x = 1 × 10^{-5} /^o C$, $\alpha_y = 2 × 10^{-5} /^o C$, $\alpha_z = 3 × 10^{-5} /^o C$. Coefficient of superficial expansion of faces can be