What is the coefficient of mutual inductance when the magnetic flux changes by $2 \times {10^{ - 2}}\,Wb$ and change in current is $0.01\,A$......$henry$
$2 $
$3$
$0.5$
$0$
A circular loop ofradius $0.3\ cm$ lies parallel to amuch bigger circular loop ofradius $20\ cm$. The centre of the small loop is on the axis of the bigger loop. The distance between their centres is $15\ cm$. If a current of $2.0\ A$ flows through the smaller loop, then the flux linked with bigger loop is
There are $10$ turns in coil $M$ and $15$ turns in coil $N$ . If a current of $2\ A$ is passed through coil $M$ then the flux linked with coil $N$ is $1.8 × 10^{-3}\ Wb$ . If a current of $3\ A$ is passed through coil $N$ then flux linked with coil $M$ is
A very long straight conductor and isosceles triangular conductor lie in a plane and are separated from each other as shown in the figure. If $a = 10\ cm , b = 20\ cm$ and $h = 10\ cm$ , find the coefficient of mutuaI induction
Two conducting circular loops of radii $R_{1}$ and $\mathrm{R}_{2}$ are placed in the same plane with their centres coinciding. If $R_{1}>>R_{2}$, the mutual inductance $M$ between them will be directly proportional to:
There are two long co -axial solenoids of same length $l.$ The inner and outer coils have radii $r_1$ and $r_2$ and number of turns per unit length $n_1$ and $n_2$ respectively. The ratio of mutual inductance to the self -inductance of the inner -coil is