What is the maximum value of the force $F$ such that the block shown in the arrangement does not move ....... $N$
$20$
$10$
$12$
$15$
Maximum force of friction is called
A box of mass $m\, kg$ is placed on the rear side of an open truck accelerating at $4\, m/s^2$. The coefficient of friction between the box and the surface below it is $0.4$. The net acceleration of the box with respect to the truck is zero. The value of $m$ is :- $[g = 10\,m/s^2]$
The force required just to move a body up an inclined plane is double the force required just to prevent the body from sliding down. If $\mu $ is the coefficient of friction, the inclination of plane to the horizontal is
A block of mass $1\, kg$ is at rest on a horizontal table. The coefficient of static friction between the block and the table is $0.5.$ The magnitude of the force acting upwards at an angle of $60^o$ from the horizontal that will just start the block moving is