When a body falls in air, the resistance of air depends to a great extent on the shape of the body, $ 3 $ different shapes are given. Identify the combination of air resistances which truly represents the physical situation. (The cross sectional areas are the same).
$1 < 2 < 3$
$2 < 3 < 1$
$3 < 2 < 1$
$3 < 1 < 2$
A spherical ball is dropped in a long column of a highly viscous liquid. The curve in the graph shown, which represents the speed of the ball $(v)$ as a function of time $(t)$ is
Why is dust particles settled down on floor in a closed room ? Explain.
In an experiment, a small steel ball falls through a Iiquid at a constant speed of $10\, cm/s$. If the steel ball is pulled upward with a force equal to twice its effective weight, how fast will it move upward ? ......... $cm/s$
In Millikan's oll drop experiment, what is the terminal speed of an uncharged drop of radius $2.0 \times 10^{-5} \;m$ and density $1.2 \times 10^{3} \;kg m ^{-3} .$ Take the viscosity of air at the temperature of the experiment to be $1.8 \times 10^{-5}\; Pa\; s$. How much is the viscous force on the drop at that speed? Neglect buoyancy of the drop due to atr.
A spherical ball of radius $1 \times 10^{-4} \mathrm{~m}$ and density $10^5$ $\mathrm{kg} / \mathrm{m}^3$ falls freely under gravity through a distance $h$ before entering a tank of water, If after entering in water the velocity of the ball does not change, then the value of $h$ is approximately:
(The coefficient of viscosity of water is $9.8 \times 10^{-6}$ $\left.\mathrm{N} \mathrm{s} / \mathrm{m}^2\right)$