When an air bubble of radius $r$ rises from the bottom to the surface of a lake, its radius becomes $\frac{{5r}}{4}$.Taking the atmospheric pressure to be equal to $10\,m$ height of water column, the depth of the lake would approximately be ....... $m$ (ignore the surface tension and the effect of temperature)

  • [JEE MAIN 2018]
  • A

    $10.5$

  • B

    $8.7$

  • C

    $11.2$

  • D

    $9.5$

Similar Questions

A soap bubble in a form of circular tube having radius of curvature $R$ and radius of curvature perpendicular to it is $5R$ . Find the excess pressure in the bubble :

A cylinder with a movable piston contains air under a pressure $p_1$ and a soap bubble of radius $'r'$ . The pressure $p_2$ to which the air should be compressed by slowly pushing the piston into the cylinder for the soap bubble to reduce its size by half will be: (The surface tension is $\sigma $ , and the temperature $T$ is maintained constant)

If a section of soap bubble (of radius $R$) through its center is considered, then force on one half due to surface tension is

A liquid column of height $0.04 \mathrm{~cm}$ balances excess pressure of soap bubble of certain radius. If density of liquid is $8 \times 10^3 \mathrm{~kg} \mathrm{~m}^{-3}$ and surface tension of soap solution is $0.28 \mathrm{Nm}^{-1}$, then diameter of the soap bubble is . . . . . . .. . $\mathrm{cm}$.

$\text { (if } g=10 \mathrm{~ms}^{-2} \text { ) }$

  • [JEE MAIN 2024]

What is the excess pressure inside a bubble of soap solution of radius $5.00 \;mm$, given that the surface tension of soap solution at the temperature ($20\,^{\circ} C$) is $2.50 \times 10^{-2}\; N m ^{-1}$ ? If an air bubble of the same dimension were formed at depth of $40.0 \;cm$ inside a container containing the soap solution (of relative density $1.20$), what would be the pressure inside the bubble? ($1$ atmospheric pressure is $1.01 \times 10^{5} \;Pa$ ).