Which graph correctly presents the variation of acceleration due to gravity with the distance from the centre of the earth (radius of the earth $= R_E$ )?
The mean radius of earth is $R$, and its angular speed on its axis is $\omega$. What will be the radius of orbit of a geostationary satellite?
A satellite is launched into a circular orbit of radius $R$ around earth, while a second satellite is launched into a circular orbit of radius $1.02\, {R}$. The percentage difference in the time periods of the two satellites is -
A satellite of mass $m$ is at a distance $a$ from $a$ star of mass $M$. The speed of satellite is $u$. Suppose the law of universal gravity is $F = - G\frac{{Mm}}{{{r^{2.1}}}}$ instead of $F = - G\frac{{Mm}}{{{r^2}}}$, find the speed of the statellite when it is at $a$ distance $b$ from the star.
A geo-stationary satellite is orbiting the earth at a height of $6 R$ above the surface of earth, $R$ being the radius of earth. The time period of another satellite at a height of $2.5 R$ from the surface of earth is
The additional kinetic energy to be provided to a satellite of mass $m$ revolving around a planet of mass $M$, to transfer it from a circular orbit of radius $R_1$ to another of radius $R_2\,(R_2 > R_1)$ is