Which graph correctly presents the variation of acceleration due to gravity with the distance from the centre of the earth (radius of the earth $= R_E$ )?
In order to make the effective acceleration due to gravity equal to zero at the equator, the angular velocity of rotation of the earth about its axis should be $(g = 10\,m{s^{ - 2}}$ and radius of earth is $6400 \,kms)$
The magnitudes of gravitational field at distances $r_1$ and $r_2$ from the centre of a uniform sphere of radius $R$ and mass $M$ are $F_1$ and $F_2$ respectively. Then-
A projectile is projected with velocity $k{v_e}$ in vertically upward direction from the ground into the space. ($v_e$ is escape velocity and $k < 1$). If air resistance is considered to be negligible then the maximum height from the centre of earth to whichit can go, will be : ($R =$ radius of earth)
The masses and radii of the earth and the moon are $M_1, R_1$ and $M_2, R_2$ respectively. Their centres are distance $d$ apart. The minimum speed with which particle of mass $m$ should be projected from a point midway between the two centres so as to escape to infinity is
The radius of a planet is $R$. A satellite revolves around it in a circle of radius $r$ with angular velocity $\omega _0.$ The acceleration due to the gravity on planet’s surface is