What should be the angular speed of earth, so that body lying on equator may appear weightlessness $ (g = 10\,m/{s^2},\,\,R = 6400\,km)$
$\frac{1}{{800}}rad/s$
$\frac{1}{{400}}rad/s$
$\frac{1}{{600}}rad/s$
$\frac{1}{{100}}rad/s$
The masses and radii of the earth and the moon are $M_1, R_1$ and $M_2, R_2$ respectively. Their centres are distance $d$ apart. The minimum speed with which particle of mass $m$ should be projected from a point midway between the two centres so as to escape to infinity is
A rocket of mass $M$ is launched vertically from the surface of the earth with an initial speed $V$. Assuming the radius of the earth to be $R$ and negligible air resistance, the maximum height attained by the rocket above the surface of the earth is
The weight of a body on the surface of the earth is $63\, N$. What is the gravitational force on it due to the earth at a height equal to half the radius of the earth ? (in $N$)
The potential energy of a satellite of mass $m$ and revolving at a height $R_e$ above the surface of earth where $R_e =$ radius of earth, is
The Earth is assumed to be a sphere of radius $R$. A platform is arranged at a height $R$ from the surface of the Earth. The escape velocity of a body from this platform is $fv$, where $v$ is its escape velocity from the surface of the Earth. the value of $f$ is