Which of the following is correct
$\tan 1 > \tan 2$
$\tan 1 = \tan 2$
$\tan 1 < \tan 2$
$\tan 1 = 1$
As, $\tan 1=1.557$
and $\tan 2=-2.185$
Clearly, $\tan 1 > \tan 2$
$\frac{{\sin \theta }}{{1 – \cot \theta }} + \frac{{\cos \theta }}{{1 – \tan \theta }} = $
$\cos 1^\circ + \cos 2^\circ + \cos 3^\circ + ….. + \cos 180^\circ = $
The value of $k$, for which ${(\cos x + \sin x)^2} + k\,\sin x\cos x – 1 = 0$ is an identity, is
If $2y\,\cos \theta = x\sin \,\theta {\rm{ and }}2x\sec \theta – y\,{\rm{cosec}}\,\theta = 3,$ then ${x^2} + 4{y^2} = $
Find the value of $\sin 15^{\circ}$
Confusing about what to choose? Our team will schedule a demo shortly.