Which of the following is not true ? If $\overrightarrow A = 3\hat i + 4\hat j$ and $\overrightarrow B = 6\hat i + 8\hat j$ where $ A$ and $B$ are the magnitudes of $\overrightarrow A $ and $\overrightarrow B $

  • A

    $\overrightarrow A \times \overrightarrow B = 0$

  • B

    $\frac{A}{B} = \frac{1}{4}$

  • C

    $\overrightarrow {A\,.} \,\overrightarrow B = 50$

  • D

    $A = 5$

Similar Questions

The angle between the vectors $\overrightarrow A $ and $\overrightarrow B $ is $\theta .$ The value of the triple product $\overrightarrow A \,.\,(\overrightarrow B \times \overrightarrow A \,)$ is

  • [AIPMT 1991]

The angle between two vectors given by $6\hat i + 6\hat j - 3\hat k$ and $7\hat i + 4\hat j + 4\hat k$ is

Find unit vector perpendicular to $\vec A$ and $\vec B$ where $\vec A = \hat i - 2\hat j + \hat k$ and $\vec B = \hat i + 2\hat j$

Consider three vectors $A =\hat{ i }+\hat{ j }-2 \hat{ k }, B =\hat{ i }-\hat{ j }+\hat{ k }$ and $C =2 \hat{ i }-3 \hat{ j }+4 \hat{ k }$. A vector $X$ of the form $\alpha A +\beta B$ ( $\alpha$ and $\beta$ are numbers) is perpendicular to $C$.The ratio of $\alpha$ and $\beta$ is

If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec  B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.

Column $-I$ Column $-II$
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ $(i)$ $\theta = \,{0^o}$
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ $(ii)$ $\theta = \,{90^o}$
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ $(iii)$ $\theta = \,{180^o}$
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ $(iv)$ $\theta = \,{60^o}$