Two vectors $A$ and $B$ have equal magnitude $x$. Angle between them is $60^{\circ}$. Then, match the following two columns.
colum $I$ colum $II$
$(A)$ $|A+B|$ $(p)$ $\frac{\sqrt{3}}{2} x$
$(B)$ $|A-B|$ $(q)$ $x$
$(C)$ $A \cdot B$ $(r)$ $\sqrt{3} x$
$(D)$ $|A \times B|$ $(s)$ None

  • A
    $( A \rightarrow r , B \rightarrow q , C \rightarrow s , D \rightarrow p )$
  • B
    $( A \rightarrow q , B \rightarrow r , C \rightarrow s , D \rightarrow p )$
  • C
    $( A \rightarrow s , B \rightarrow q , C \rightarrow r , D \rightarrow p )$
  • D
    $( A \rightarrow r , B \rightarrow q , C \rightarrow p , D \rightarrow s )$

Similar Questions

Consider three vectors $A =\hat{ i }+\hat{ j }-2 \hat{ k }, B =\hat{ i }-\hat{ j }+\hat{ k }$ and $C =2 \hat{ i }-3 \hat{ j }+4 \hat{ k }$. A vector $X$ of the form $\alpha A +\beta B$ ( $\alpha$ and $\beta$ are numbers) is perpendicular to $C$.The ratio of $\alpha$ and $\beta$ is

The components of $\vec a = 2\hat i + 3\hat j$ along the direction of vector $\left( {\hat i + \hat j} \right)$ is

Let $\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ be any vector. Another vector $\overrightarrow B $ which is normal to $\overrightarrow A$ is

Obtain the scalar product of unit vectors in Cartesian co-ordinate system.

The vector sum of two forces is perpendicular to their vector differences. In that case, the forces

  • [AIPMT 2003]