Which of the following is the graph showing stress-strain variation for elastomers?
The graph shows the behaviour of a length of wire in the region for which the substance obeys Hook’s law. $P$ and $Q$ represent
The adjacent graph shows the extension $(\Delta l)$ of a wire of length $1\, m$ suspended from the top of a roof at one end and with a load $W$ connected to the other end. If the cross-sectional area of the wire is $10^{-6}\, m^2$, calculate the Young’s modulus of the material of the wire.
The stress versus strain graphs for wires of two materials $A$ and $B$ are as shown in the figure. If ${Y_A}$ and ${Y_B}$ are the Young ‘s modulii of the materials, then
In Column$-I$ there are two graphs and in Column$-II$ whose graph is for this are given. Join them appropriately :
Column $-I$ | Column $-II$ |
$(a)$ image | $(i)$ $A$ is ductile |
$(b)$ image | $(ii)$ $A$ is brittle |
$(iii)$ $B$ is ductile | |
$(iv)$ $B$ is brittle |
The value of force constant between the applied elastic force $F$ and displacement will be