Which of the following statement is false for the properties of electromagnetic waves ?
These waves do not require any material medium for propagation
Both electric and magnetic field vectors attain the maxima and minima at the same place and same time
The energy in electromagnetic wave is divided equally between electric and magnetic field vectors
Both electric and magnetic field vectors are parallel to each other and perpendicular to the direction of propagation of wave
A radar sends an electromagnetic signal of electric field $\left( E _{0}\right)=2.25\,V / m$ and magnetic field $\left( B _{0}\right)=1.5 \times 10^{-8}\,T$ which strikes a target on line of sight at a distance of $3\,km$ in a medium After that, a pail of signal $(echo)$ reflects back towards the radar vitli same velocity and by same path. If the signal was transmitted at time $t_{0}$ from radar. then after how much time (in $\times 10^{-5}\,s$) echo will reach to the radar?
The electric field associated with an electromagnetic wave propagating in a dielectric medium is given by $\vec{E}=30(2 \hat{x}+\hat{y}) \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^7}{3} z\right)\right] \mathrm{V} \mathrm{m}^{-1}$. Which of the following option($s$) is(are) correct?
[Given: The speed of light in vacuum, $c=3 \times 10^8 \mathrm{~ms}^{-1}$ ]
($A$) $B_x=-2 \times 10^{-7} \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^7}{3} z\right)\right] \mathrm{Wbm}^{-2}$.
($B$) $B_y=2 \times 10^{-7} \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^7}{3} z\right)\right] \mathrm{Wbm}^{-2}$
($C$) The wave is polarized in the $x y$-plane with polarization angle $30^{\circ}$ with respect to the $x$-axis.
($D$) The refractive index of the medium is $2$ .
The electric field in an electromagnetic wave is given by $\overrightarrow{\mathrm{E}}=\hat{\mathrm{i}} 40 \cos \omega\left(\mathrm{t}-\frac{\mathrm{z}}{\mathrm{c}}\right) N \mathrm{NC}^{-1}$. The magnetic field induction of this wave is (in SI unit):
Light wave traveling in air along $x$-direction is given by $E _{ y }=540 \sin \pi \times 10^{4}( x - ct ) Vm ^{-1}$. Then, the peak value of magnetic field of wave will be $\dots \times 10^{-7}\,T$ (Given $c =3 \times 10^{8}\,ms ^{-1}$ )
The oscillating electric and magnetic vectors of an electromagnetic wave are oriented along