Which of the following statement is true for displacement current
It is due to drift of electrons in a conductor
It is due to diffusion of electrons in a semi-conductor
It is due to change in electric flux with time
It is due to change in magnetic flux with time
Light is an electromagnetic wave. Its speed in vacuum is given by the expression
A lamp emits monochromatic green light uniformly in all directions. The lamp is $3%$ efficient in converting electrical power to electromagnetic waves and consumes $100\,W $ of power. The amplitude of the electric field associated with the electromagnetic radiation at a distance of $10m$ from the lamp will be........$V/m$
If $E$ and $B$ denote electric and magnetic fields respectively, which of the following is dimensionless
A plane electromagnetic wave, has frequency of $2.0 \times 10^{10}\, Hz$ and its energy density is $1.02 \times 10^{-8}\, J / m ^{3}$ in vacuum. The amplitude of the magnetic field of the wave is close to$....nT$
$\left(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{\circ} \frac{ Nm ^{2}}{ C ^{2}}\right.$ and speed of $1 ight$ $\left.=3 \times 10^{8}\, ms ^{-1}\right)$
Intensity of sunlight is observed as $0.092\, {Wm}^{-2}$ at a point in free space. What will be the peak value of magnetic field at that point? $\left(\sigma_{0}=8.85 \times 10^{-12}\, {C}^{2} \,{N}^{-1} \,{m}^{-2}\right.$ )