For a transparent medium relative permeablity and permittlivity, $\mu_{\mathrm{r}}$ and $\epsilon_{\mathrm{r}}$ are $1.0$ and $1.44$ respectively. The velocity of light in this medium would be,

  • [NEET 2019]
  • A

    $2.5 \times 10^{8} \;\mathrm{m} / \mathrm{s}$

  • B

    $3 \times 10^{8} \;\mathrm{m} / \mathrm{s}$

  • C

    $2.08 \times 10^{8} \;\mathrm{m} / \mathrm{s}$

  • D

    $4.32 \times 10^{8} \;\mathrm{m} / \mathrm{s}$

Similar Questions

The intensity of the light from a bulb incident on a surface is $0.22 \,W / m ^{2}$. The amplitude of the magnetic field in this light-wave is_______ $\times 10^{-9} \,T$. (Given : Permittivity of vacuum $\epsilon_{0}=8.85 \times 10^{-12} \,C ^{2} N ^{-1} m ^{-2}$, speed of light in vacuum $c =3 \times 10^{8} \,ms ^{-1}$ )

  • [JEE MAIN 2022]

An electromagnetic wave of frequency $5\, GHz ,$ is travelling in a medium whose relative electric permittivity and relative magnetic permeability both are $2 .$ Its velocity in this medium is $\times 10^{7}\, m / s$

  • [JEE MAIN 2021]

In a certain region uniform electric field $E$ and magnetic field $B$ are present in the opposite direction. At the instant $t = 0,$ a particle of mass $m$ carrying a charge $q$ is given velocity $v_o$ at an angle $\theta ,$ with the $y$ axis, in the $yz$ plane. The time after which the speed of the particle would be minimum is equal to

An em wave is propagating in a medium with a velocity $\vec v =v\hat i.$ The instantaneous oscillating electric field of this em wave is along $+y$ axis. Then the direction of oscillating magnetic field of the em wave will be along

  • [NEET 2018]

A plane electromagnetic wave of frequency $20\,MHz$ propagates in free space along $x$-direction. At a particular space and time, $\overrightarrow{ E }=6.6 \hat{ j } V / m$. What is $\overrightarrow{ B }$ at this point?

  • [JEE MAIN 2023]