Which of the following units denotes the dimensions $\frac{{M{L^2}}}{{{Q^2}}}$, where $Q$
denotes the electric charge?
$weber $ $(Wb)$
$\frac{{Wb}}{{{m^2}}}$
$henry$ $(H)$
$\;\frac{H}{{{m^2}}}$
Match List $I$ with List $II$ :
List $I$ (Physical Quantity) | List $II$ (Dimensional Formula) |
$(A)$ Pressure gradient | $(I)$ $\left[ M ^0 L ^2 T ^{-2}\right]$ |
$(B)$ Energy density | $(II)$ $\left[ M ^1 L ^{-1} T ^{-2}\right]$ |
$(C)$ Electric Field | $(III)$ $\left[ M ^1 L ^{-2} T ^{-2}\right]$ |
$(D)$ Latent heat | $(IV)$ $\left[ M ^1 L ^1 T ^{-3} A ^{-1}\right]$ |
Choose the correct answer from the options given below:
A force $F$ is given by $F = at + b{t^2}$, where $t$ is time. What are the dimensions of $a$ and $b$
A function $f(\theta )$ is defined as $f(\theta )\, = \,1\, - \theta + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ Why is it necessary for $f(\theta )$ to be a dimensionless quantity ?
If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express time in terms of dimensions of these quantities.
Which of the following is not a dimensionless quantity?