Which one statement is correct ? A parallel plate air condenser is connected with a battery. Its charge, potential, electric field and energy are ${Q_o},\;{V_o},\;{E_o}$ and ${U_o}$ respectively. In order to fill the complete space between the plates a dielectric slab is inserted, the battery is still connected. Now the corresponding values $Q,\;V,\;E$ and $U$ are in relation with the initially stated as
$Q > {Q_o}$
$U > {U_o}$
$E > {E_o}$
Both $(a)$ and $(b)$
A parallel plate capacitor is made of two plates of length $l$, width $w$ and separated by distance $d$. A dielectric slab ( dielectric constant $K$) that fits exactly between the plates is held near the edge of the plates. It is pulled into the capacitor by a force $F = -\frac{{\partial U}}{{\partial x}}$ where $U$ is the energy of the capacitor when dielectric is inside the capacitor up to distance $x$ (See figure). If the charge on the capacitor is $Q$ then the force on the dielectric when it is near the edge is
A parallel plate capacitor of capacitance $90\ pF$ is connected to a battery of $emf$ $20\ V$. If a dielectric material of dielectric constant $K = \frac{5}{3}$ is inserted between the plates, the magnitude of the induced charge will be.......$n $ $C$
A parallel plate capacitor with air as medium between the plates has a capacitance of $10\,\mu F$. The area of capacitor is divided into two equal halves and filled with two media as shown in the figure having dielectric constant ${k_1} = 2$and ${k_2} = 4$. The capacitance of the system will now be.......$\mu F$
The space between the plates of a parallel plate capacitor is filled with a 'dielectric' whose 'dielectric constant' varies with distance as per the relation:
$K(x) = K_0 + \lambda x$ ( $\lambda =$ constant)
The capacitance $C,$ of the capacitor, would be related to its vacuum capacitance $C_0$ for the relation
While a capacitor remains connected to a battery and dielectric slab is applied between the plates, then