Which Venn diagram represent the truth of the statements “No child is naughty”
Where $U$ = Universal set of human beings, $C$ = Set of children, $N$ = Set of naughty persons
None of these
The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,
$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$
that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to
Negation of $(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$ is
Negation of "If India wins the match then India will reach in the final" is :-
Let $p$ and $q$ be two statements.Then $\sim( p \wedge( p \Rightarrow \sim q ))$ is equivalent to
The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a