Which Venn diagram represent the truth of the statement“All students are hard working.”
Where $U$ = Universal set of human being, $S$ = Set of all students, $H$ = Set of all hard workers.
None of these
The contrapositive of $(p \vee q) \Rightarrow r$ is
If the Boolean expression $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ is equivalent to $p \wedge q$, where $ \oplus $ , $\Theta \in \left\{ { \wedge , \vee } \right\}$ , ,then the ordered pair $\left( { \oplus ,\Theta } \right)$ is
Which of the following Boolean expression is a tautology ?
If the inverse of the conditional statement $p \to \left( { \sim q\ \wedge \sim r} \right)$ is false, then the respective truth values of the statements $p, q$ and $r$ is
$( S 1)( p \Rightarrow q ) \vee( p \wedge(\sim q ))$ is a tautology $( S 2)((\sim p ) \Rightarrow(\sim q )) \wedge((\sim p ) \vee q )$ is a Contradiction. Then