- Home
- Standard 9
- Mathematics
2. Polynomials
hard
Without actually calculating the cubes, find the value of each of the following
$(21)^{3}+(15)^{3}+(-36)^{3}$
A
$61280$
B
$-34020$
C
$65041$
D
$-53120$
Solution
Taking $a=21 ; \quad b=15 ; c=(-36),$ we get
$a+b+c=21+15+(-36)$
$=36-36=0$
Now, if $a+b+c=0,$ then
$a^{3}+b^{3}+c^{3}=3 a b c$
$\therefore(21)^{3}+(15)^{3}+(-36)^{3}=3(21)(15)(-36)$
$=63 \times(-540)$
$=-34020$
Standard 9
Mathematics