Write a formula showing the relation between half life and average life of a radioactive substance.
Sometimes a radioactive nucleus decays into a nucleus which itself is radioactive. An example is
$\mathop {^{38}S}\limits_{sulpher} \xrightarrow[{ - 2.48\,h}]{{half\,year}}\mathop {^{38}Cl}\limits_{chloride} \xrightarrow[{ - 0.62\,h}]{{half\,year}}\mathop {^{38}Ar}\limits_{Argon} $
Assume that we start with $1000$ $^{38}S$ nuclei at time $t = 0$. The number of $^{38} Cl$ is of count zero at $ t=0$ an will again be zero at $t = \infty $. At what value of $t,$ would the number of counts be a maximum ?
Radioactivity was discovered by
Half lives of two radioactive substances $A$ and $B$ are respectively $20$ minutes and $40$ minutes. Initially the sample of $A$ and $B$ have equal number of nuclei. After $80$ minutes, the ratio of remaining number of $A$ and $B$ nuclei is
In a radioactive reaction $_{92}{X^{232}}{ \to _{82}}{Y^{204}}$, the number of $\alpha - $ particles emitted is
Half life of $B{i^{210}}$ is $5$ days. If we start with $50,000$ atoms of this isotope, the number of atoms left over after $10$ days is