Write equation of transverse wave speed for stretched string.
Two pulses travel in mutually opposite directions in a string with a speed of $2.5 cm/s$ as shown in the figure. Initially the pulses are $10cm$ apart. What will be the state of the string after two seconds
A perfectly elastic uniform string is suspended vertically with its upper end fixed to the ceiling and the lower end loaded with the weight. If a transverse wave is imparted to the lower end of the string, the pulse will
$Assertion :$ Two waves moving in a uniform string having uniform tension cannot have different velocities.
$Reason :$ Elastic and inertial properties of string are same for all waves in same string. Moreover speed of wave in a string depends on its elastic and inertial properties only.
A block of mass $1\,\, kg$ is hanging vertically from a string of length $1\,\, m$ and mass /length $= 0.001\,\, Kg/m$. A small pulse is generated at its lower end. The pulse reaches the top end in approximately .... $\sec$
A steel wire has a length of $12$ $m$ and a mass of $2.10$ $kg$. What will be the speed of a transverse wave on this wire when a tension of $2.06{\rm{ }} \times {10^4}$ $\mathrm{N}$ is applied ?