- Home
- Standard 12
- Mathematics
Write Minors and Cofactors of the elements of following determinants: $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
Solution
The given determinant is $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
By the definition of minors and cofactors, we have:
$\mathrm{M}_{11}=$ minor of $a_{11}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$\mathrm{M}_{12}=$ minor of $a_{12}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0$
$\mathrm{M}_{13}=$ minor of $a_{13}=\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|=0$
$\mathrm{M}_{21}=$ minor of $a_{21}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0$
$\mathrm{M}_{22}=$ minor of $a_{22}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$\mathrm{M}_{23}=$ minor of $a_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=0$
$\mathrm{M}_{31}=$ minor of $a_{31}=\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right|=0$
$\mathrm{M}_{32}=$ minor of $a_{32}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=0$
$\mathrm{M}_{33}=$ minor of $a_{33}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$
$\mathrm{A}_{11}=$ cofactor of $a_{11}=(-1)^{1+1} \mathrm{M}_{11}=1$
$\mathrm{A}_{12}=$ cofactor of $a_{12}=(-1)^{1+2} \mathrm{M}_{12}=0$
$\mathrm{A}_{13}=$ cofactor of $a_{13}=(-1)^{1+3} \mathrm{M}_{13}=0$
$\mathrm{A}_{21}=$ cofactor of $a_{21}=(-1)^{2+1} \mathrm{M}_{21}=0$
$\mathrm{A}_{22}=$ cofactor of $a_{22}=(-1)^{2+2} \mathrm{M}_{22}=1$
$\mathrm{A}_{23}=$ cofactor of $a_{23}=(-1)^{2+3} \mathrm{M}_{23}=0$
$\mathrm{A}_{31}=$ cofactor of $a_{31}=(-1)^{3+1} \mathrm{M}_{31}=0$
$\mathrm{A}_{32}=$ cofactor of $a_{32}=(-1)^{3+2} \mathrm{M}_{32}=0$
$\mathrm{A}_{33}=$ cofactor of $a_{33}=(-1)^{3+3} \mathrm{M}_{33}=1$