Write the set $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}\right\}$ in the set-builder form.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We see that each member in the given set has the numerator one less than the denominator. Also, the numerator begin from $1$ and do not exceed $6 .$ Hence, in the set-builder form the given set is

$\left\{ {x:x = \frac{n}{{n + 1}},} \right.$ where $n$ is a natural number and $\left. {1 \le n \le 6} \right\}$

Similar Questions

Let $A=\{1,2,\{3,4\}, 5\} .$ Which of the following statements are incorrect and why ?

$\varnothing \subset A$

Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$

$\{ 0,1,2,3,4,5,6\} $

Which of the following sets are finite or infinite.

The set of prime numbers less than $99$

List all the subsets of the set $\{-1,0,1\}.$

Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$

$\{0,1,2,3,4,5,6,7,8,9,10\}$