Young’s modulus of perfectly rigid body material is
Zero
Infinity
${\rm{1}} \times {\rm{1}}{{\rm{0}}^{{\rm{10}}}}\,N/{m^2}$
${\rm{10}} \times {\rm{1}}{{\rm{0}}^{{\rm{10}}}}\,N/{m^2}$
A rod of length $l$ and area of cross-section $A$ is heated from $0°C$ to $100°C$. The rod is so placed that it is not allowed to increase in length, then the force developed is proportional to
Young’s moduli of two wires $A$ and $B$ are in the ratio $7 : 4$. Wire $A$ is $2\, m$ long and has radius $R$. Wire $A$ is $2\, m$ long and has radius $R$. Wire $B$ is $1.5\, m$ long and has radius $2\, mm$. If the two wires stretch by the same length for a given load, then the value of $R$ is close to ......... $mm$
A mild steel wire of length $2l$ meter cross-sectional area $A \;m ^2$ is fixed horizontally between two pillars. A small mass $m \;kg$ is suspended from the mid point of the wire. If extension in wire are within elastic limit. Then depression at the mid point of wire will be .............
Figure shows graph between stress and strain for a uniform wire at two different femperatures. Then
$(a)$ A steel wire of mass $\mu $ per unit length with a circular cross section has a radius of $0.1\,cm$. The wire is of length $10\,m$ when measured lying horizontal and hangs from a hook on the wall. A mass of $25\, kg$ is hung from the free end of the wire. Assuming the wire to be uniform an lateral strains $< \,<$ longitudinal strains find the extension in the length of the wire. The density of steel is $7860\, kgm^{-3}$ and Young’s modulus $=2 \times 10^{11}\,Nm^{-2}$.
$(b)$ If the yield strength of steel is $2.5 \times 10^8\,Nm^{-2}$, what is the maximum weight that can be hung at the lower end of the wire ?