Young’s modulus of perfectly rigid body material is

  • A

    Zero

  • B

    Infinity

  • C

    ${\rm{1}} \times {\rm{1}}{{\rm{0}}^{{\rm{10}}}}\,N/{m^2}$

  • D

    ${\rm{10}} \times {\rm{1}}{{\rm{0}}^{{\rm{10}}}}\,N/{m^2}$

Similar Questions

A uniform copper rod of length $50 \,cm$ and diameter $3.0 \,mm$ is kept on a frictionless horizontal surface at $20^{\circ} C$. The coefficient of linear expansion of copper is $2.0 \times 10^{-5} \,K ^{-1}$ and Young's modulus is $1.2 \times 10^{11} \,N / m ^2$. The copper rod is heated to $100^{\circ} C$, then the tension developed in the copper rod is .......... $\times 10^3 \,N$

The following four wires are made of same material. Which one will have the largest elongation when subjected to the same tension ?

Two wire $A$ and $B$ are stretched by same force. If, for $A$ and $B, Y_A: Y_B=1: 2, r_A: r_B=3: 1$ and $L_A: L_B=4: 1$, then ratio of their extension $\left(\frac{\Delta L_A}{\Delta L_B}\right)$ will be .............

Young's moduli of the material of wires $A$ and $B$ are in the ratio of $1: 4$, while its area of cross sections are in the ratio of $1: 3$. If the same amount of load is applied to both the wires, the amount of elongation produced in the wires $A$ and $B$ will be in the ratio of

[Assume length of wires $A$ and $B$ are same]

  • [JEE MAIN 2023]

If Young's modulus of iron is $2 \times {10^{11}}\,N/{m^2}$ and the interatomic spacing between two molecules is $3 \times {10^{ - 10}}$metre, the interatomic force constant is ......... $N/m$