An equilateral triangle $ABC$ is formed by two copper rods $AB$ and $BC$ and one is aluminium rod which heated in such a way that temperature of each rod increases by $\Delta T$. Find change in the angle $\angle {ABC}$. (Coefficient of linear expansion for copper is $\alpha _1$ and for aluminium is $\alpha _2$).

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Suppose, $\mathrm{AB}=l_{1}, \mathrm{AC}=l_{2}$ and $\mathrm{BC}=l_{3}$

$\therefore \cos \theta=\frac{l_{3}^{2}+l_{1}^{2}-l_{2}^{2}}{2 l_{3} l_{1}}$ where $\angle \mathrm{ABC}=\theta$ $\therefore 2 l_{3} l_{1} \cos \theta=l_{3}^{2}+l_{1}^{2}-l_{2}^{2}$

Integrating on both side,

$2\left(l_{3} d l_{1}+l_{1} d l_{3}\right) \cos \theta-2 l 3 l_{1} \sin \theta d \theta=2 l_{3} d l_{3}+2 l_{1} d l_{1}-2 l_{2} d l_{2}$

Dividing by $2$ ,

$\left(l_{3} d l_{1}+l_{1} \times d l_{3}\right) \cos \theta-l_{3} l_{1} \sin \theta d \theta=l_{3} d l_{3}+l_{1} d l_{1}-l_{2} d l_{2}$

Now $d l_{1}=l_{1} \alpha_{1} \Delta \mathrm{T}, d l_{2}=l_{2} \alpha_{2} \Delta \mathrm{T}, d l_{3}=l_{3} \alpha_{3} \Delta \mathrm{T}$ then,

$\left(l_{3} \times l_{1} \alpha_{1} \Delta \mathrm{T}+l_{1} \times l_{3} \alpha_{3} \Delta \mathrm{T}\right) \cos \theta-l_{3} l_{1} \sin \theta d \theta=l_{3} \times l_{3} \alpha_{3} \Delta \mathrm{T}+l_{1} \times l_{1} \alpha_{1} \Delta \mathrm{T}-l_{2} \times l_{2} \alpha_{2} \Delta \mathrm{T}$

Now let $l_{1}=l_{2}=l_{3}=l$ and $\alpha_{3}=\alpha_{1}$

$\therefore\left(l^{2} \alpha_{1} \Delta \mathrm{T}+l^{2} \alpha_{1} \Delta \mathrm{T}\right) \cos \theta-l^{2} \sin \theta d \theta=l^{2} \alpha_{1} \Delta \mathrm{T}+l^{2} \alpha_{1} \Delta \mathrm{T}-l^{2} \alpha_{2} \Delta \mathrm{T}$

$\quad \cos \theta=\cos 60^{\circ}=\frac{1}{2} \quad(\mathrm{Equilateral}$ triangle $)$

$\therefore 2 l^{2} \alpha_{1} \Delta \mathrm{T} \times \frac{1}{2}-l^{2} \sin \theta d \theta=2 l \alpha_{1} \Delta \mathrm{T}-l^{2} \alpha_{2} \Delta \mathrm{T}$

$\therefore l \alpha_{1} \Delta \mathrm{T}-l^{2} \sin \theta d \theta=2 l^{2} \alpha_{1} \Delta \mathrm{T}-l^{2} \alpha_{2} \Delta \mathrm{T}$

890-s133

Similar Questions

A cylindrical wire of radius $1\,\, mm$, length $1 m$, Young’s modulus $= 2 × 10^{11} N/m^2$, poisson’s ratio $\mu = \pi /10$ is stretched by a force of $100 N$. Its radius will become

Young's modulus depends upon

A uniform wire (Young's modulus $2 \times 10^{11}\, Nm^{-2}$ ) is subjected to longitudinal tensile stress of $5 \times 10^7\,Nm^{-2}$ . If the over all volume change in the wire is $0.02\%,$ the fractional decrease in the radius of the wire is close to

  • [JEE MAIN 2013]

$(a)$ A steel wire of mass $\mu $ per unit length with a circular cross section has a radius of $0.1\,cm$. The wire is of length $10\,m$ when measured lying horizontal and hangs from a hook on the wall. A mass of $25\, kg$ is hung from the free end of the wire. Assuming the wire to be uniform an lateral strains $< \,<$ longitudinal strains find the extension in the length of the wire. The density of steel is $7860\, kgm^{-3}$ and Young’s modulus $=2 \times 10^{11}\,Nm^{-2}$.

$(b)$ If the yield strength of steel is $2.5 \times 10^8\,Nm^{-2}$, what is the maximum weight that can be hung at the lower end of the wire ?

A $14.5\; kg$ mass, fastened to the end of a steel wire of unstretched length $1.0 \;m ,$ is whirled in a vertical circle with an angular velocity of $2\;rev/s$ at the bottom of the circle. The cross-sectional area of the wire is $0.065 \;cm ^{2} .$ Calculate the elongation of the wire when the mass is at the lowest point of its path.