An equilateral triangle $ABC$ is formed by two copper rods $AB$ and $BC$ and one is aluminium rod which heated in such a way that temperature of each rod increases by $\Delta T$. Find change in the angle $\angle {ABC}$. (Coefficient of linear expansion for copper is $\alpha _1$ and for aluminium is $\alpha _2$).

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Suppose, $\mathrm{AB}=l_{1}, \mathrm{AC}=l_{2}$ and $\mathrm{BC}=l_{3}$

$\therefore \cos \theta=\frac{l_{3}^{2}+l_{1}^{2}-l_{2}^{2}}{2 l_{3} l_{1}}$ where $\angle \mathrm{ABC}=\theta$ $\therefore 2 l_{3} l_{1} \cos \theta=l_{3}^{2}+l_{1}^{2}-l_{2}^{2}$

Integrating on both side,

$2\left(l_{3} d l_{1}+l_{1} d l_{3}\right) \cos \theta-2 l 3 l_{1} \sin \theta d \theta=2 l_{3} d l_{3}+2 l_{1} d l_{1}-2 l_{2} d l_{2}$

Dividing by $2$ ,

$\left(l_{3} d l_{1}+l_{1} \times d l_{3}\right) \cos \theta-l_{3} l_{1} \sin \theta d \theta=l_{3} d l_{3}+l_{1} d l_{1}-l_{2} d l_{2}$

Now $d l_{1}=l_{1} \alpha_{1} \Delta \mathrm{T}, d l_{2}=l_{2} \alpha_{2} \Delta \mathrm{T}, d l_{3}=l_{3} \alpha_{3} \Delta \mathrm{T}$ then,

$\left(l_{3} \times l_{1} \alpha_{1} \Delta \mathrm{T}+l_{1} \times l_{3} \alpha_{3} \Delta \mathrm{T}\right) \cos \theta-l_{3} l_{1} \sin \theta d \theta=l_{3} \times l_{3} \alpha_{3} \Delta \mathrm{T}+l_{1} \times l_{1} \alpha_{1} \Delta \mathrm{T}-l_{2} \times l_{2} \alpha_{2} \Delta \mathrm{T}$

Now let $l_{1}=l_{2}=l_{3}=l$ and $\alpha_{3}=\alpha_{1}$

$\therefore\left(l^{2} \alpha_{1} \Delta \mathrm{T}+l^{2} \alpha_{1} \Delta \mathrm{T}\right) \cos \theta-l^{2} \sin \theta d \theta=l^{2} \alpha_{1} \Delta \mathrm{T}+l^{2} \alpha_{1} \Delta \mathrm{T}-l^{2} \alpha_{2} \Delta \mathrm{T}$

$\quad \cos \theta=\cos 60^{\circ}=\frac{1}{2} \quad(\mathrm{Equilateral}$ triangle $)$

$\therefore 2 l^{2} \alpha_{1} \Delta \mathrm{T} \times \frac{1}{2}-l^{2} \sin \theta d \theta=2 l \alpha_{1} \Delta \mathrm{T}-l^{2} \alpha_{2} \Delta \mathrm{T}$

$\therefore l \alpha_{1} \Delta \mathrm{T}-l^{2} \sin \theta d \theta=2 l^{2} \alpha_{1} \Delta \mathrm{T}-l^{2} \alpha_{2} \Delta \mathrm{T}$

890-s133

Similar Questions

When a certain weight is suspended from a long uniform wire, its length increases by one  $cm$. If the same weight is suspended from another wire of the same material and length  but having a diameter half of the first one, the increase in length will be ......... $cm$

There are two wires of same material and same length while the diameter of second wire is $2$ times the diameter of first wire, then ratio of extension produced in the wires by applying same load will be 

If Young's modulus of iron is $2 \times {10^{11}}\,N/{m^2}$ and the interatomic spacing between two molecules is $3 \times {10^{ - 10}}$metre, the interatomic force constant is ......... $N/m$

The area of cross-section of a wire of length $1.1$ metre is $1$ $mm^2$. It is loaded with $1 \,kg.$ If Young's modulus of copper is $1.1 \times {10^{11}}\,N/{m^2}$, then the increase in length will be ......... $mm$ (If $g = 10\,m/{s^2})$

The mass and length of a wire are $M$ and $L$ respectively. The density of the material of the wire is $d$. On applying the force $F$ on the wire, the increase in length is $l$, then the Young's modulus of the material of the wire will be