“Explain Triangle method (head to tail method) of vector addition.”

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let us consider two vectors $\vec{A}$ and $\vec{B}$ that lie in a plane as shown in figure $(a)$.

The lengths of the line segments representing these vectors are proportional to the magnitude of the vectors.

To find the sum $\vec{A}+\vec{B}$, we place vector $\vec{B}$ so that its tail is at the head of the vector $\vec{A}$, as in figure (b).

Then we join the tail of $\overrightarrow{\mathrm{A}}$ to the head of $\overrightarrow{\mathrm{B}}$.

This line $\overrightarrow{O Q}$ represent a vector $\vec{R}$, that is the sum of the vectors $\vec{A}$ and $\vec{B}$.

Since, in this procedure of vector addition, vectors are arranged head to tail, this graphical method is called the head-to-tail method.

The two vectors and their resultant form three sides of a triangle, so this method is also known as triangle method of vector addition.

885-56

Similar Questions

The resultant of two vectors at an angle $150^{\circ}$ is $10$ units and is perpendicular to one vector. The magnitude of the smaller vector is ....... units

Two forces are such that the sum of their magnitudes is $18\; N$ and their resultant is $12\; N$ which is perpendicular to the smaller force. Then the magnitudes of the forces are

  • [AIEEE 2002]

Explain the parallelogram method for vector addition. Also explain that this is comparable to triangle method.

What vector must be added to the two vectors $\hat i - 2\hat j + 2\hat k$ and $2\hat i + \hat j - \hat k,$ so that the resultant may be a unit vector along $X-$axis

Following sets of three forces act on a body. Whose resultant cannot be zero