સદિશોના સરવાળા માટે ત્રિકોણની રીત (શીર્ષથી પુચ્છ રીત) સમજાવો.
આકૃતિમાં દર્શાવેલા બે સદિશો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ નો સદિશ સરવાળો ત્રિકોણની રીતે કરવો છે.
આ સદિશોની લંબાઈ સદિશોના માનના સમપ્રમાણમાં છે.
આકૃતિમાં દર્શાવ્યા પ્રમાણે કોઈ નિશ્ચિત બિંદુ $O$ પસંદ કરો.
હવે $\overrightarrow{ A }$ ને એવી રીતે દર્શાવો કે જેથી તેની લંબાઈ, દિશા ન બદલાય અને તેનું પુચ્છ $O$ પર આવે.
$\overrightarrow{ B }$ ને એવી રીતે દર્શાવો કે જેથી તેની લંબાઈ, દિશા ન બદલાય અને તેનું પુચ્છ $\vec{\textrm{A}}$ ના શીર્ષ પર આવે.
$\vec{A}$ ના પુચ્છ $O$ અને $\vec{B}$ ના શીર્ષને જોડતો સદિશ $\overrightarrow{O Q}$ દોરો કે $\vec{A}$ અને $\vec{B}$ નો સદિશ સરવાળો છે.
$\overrightarrow{ OQ }=\overrightarrow{ R }=\overrightarrow{ A }+\overrightarrow{ B }$
આ પદ્ધતિમાં એક સદિશના શીર્ષ પર બીજા સદિશનું પુચ્છ ગોઠવાતું હોવાથી આ રીતને શીર્ષથી પુચ્છની રીત પણ કહે છે. સદિશોના સરવાળાની આ રીતમાં બે સદિશો અને તેમનો પરિણામી સદિશ દ્વારા ત્રિકોણની ત્રણ બાજુઓની રચના થતી હોવાથી તેને સદિશ સરવાળની ત્રિકોણની રીત પણ કહે છે.
સદિશ સરવાળાના બે ગુણધર્મો નીચે મુજબ છે :
$(1)$ સદિશોનો સરવાળો સમક્રમી છે.
$(2)$ સદિશોનો સરવાળો જૂથના નિયમને અનુસરે છે.
કોઈ સદિશ $\vec A $ માથી એક નવો સદિશ $\vec B$ મેળવવા માટે તેને $\Delta \theta$ રેડિયન $( \Delta \theta << 1)$ જેટલું કોણાવર્તન કરાવવામાં આવે છે. તો આ કિસ્સામાં $\left| {\vec B - \vec A} \right|$ શું થશે?
બે બળોના મૂલ્યોનો સરવાળો $18\;N$ અને તેમનું પરિણામી બળ $12\;N$ છે જે પરિણામી બળ નાના મૂલ્યના બળને લંબ છે. તો તે બંને બળોના મૂલ્ય કેટલા હશે?
$\vec A$ અને $\vec B$ નો પરિણામી $\vec A$ સાથે $\alpha $ ખૂણો બનાવે છે. અને $\vec B$ સાથે $\beta $ ખૂણો બનાવે તો .....
સદિશ $\mathop A\limits^ \to \,$ અને $ \,\mathop B\limits^ \to $ x-અક્ષની સાપેક્ષે અનુક્રમે $20^0$ અને $110^0$ ખૂણો બનાવે છે. આ સદિશોનું મૂલ્ય અનુક્રમે $5 m$ અને $12 m$ છેતો તેના પરિણામી સદીશે x-અક્ષ સાથે રચાતા ખૂણાનું મૂલ્ય ..... મળેે.
$\vec A $ અને $\vec B $ પરિણામી સદિશ $\vec A $ ને લંબ છે .$\vec A $ અને $\vec B $ વચ્ચેનો ખૂણો કેટલો હશે ?