If the resultant of $n$ forces of different magnitudes acting at a point is zero, then the minimum value of $n$ is
$1$
$2$
$3$
$4$
Two vectors having equal magnitudes of $x\, units$ acting at an angle of $45^o$ have resultant $\sqrt {\left( {2 + \sqrt 2 } \right)} $ $units$. The value of $x$ is
$\overrightarrow A = 2\hat i + \hat j,\,B = 3\hat j - \hat k$ and $\overrightarrow C = 6\hat i - 2\hat k$.Value of $\overrightarrow A - 2\overrightarrow B + 3\overrightarrow C $ would be
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is
If $|{\overrightarrow V _1} + {\overrightarrow V _2}|\, = \,|{\overrightarrow V _1} - {\overrightarrow V _2}|$ and ${V_2}$ is finite, then
Two forces of $10 \,N$ and $6 \,N$ act upon a body. The direction of the forces are unknown. The resultant force on the body may be .........$N$