$\frac{{\sin {{81}^o} + \cos {{81}^o}}}{{\sin {{81}^o} - \cos {{81}^o}}}$ is equal to
$cot9^o$
$tan9^o$
$cot54^o$
$tan54^o$
$E=\frac{1+tan\,9^o}{1-tan\,9^o} =tan\, 54^o$
If $2\sec 2\alpha = \tan \beta + \cot \beta ,$ then one of the values of $\alpha + \beta $ is
If ${\tan ^2}\theta = 2{\tan ^2}\phi + 1,$ then $\cos 2\theta + {\sin ^2}\phi $ equals
The expression $\frac{{{{\tan }^2}20^\circ – {{\sin }^2}20^\circ }}{{{{\tan }^2}20^\circ \,\cdot\,{{\sin }^2}20^\circ }}$ simplifies to
If $\alpha $ is a root of $25{\cos ^2}\theta + 5\cos \theta – 12 = 0$, $\pi /2 < \alpha < \pi $, then $\sin 2\alpha $ is equal to
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ is equal to$……$.
Confusing about what to choose? Our team will schedule a demo shortly.